Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Clin Imaging ; 64: 35-42, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-1906892

ABSTRACT

As the global pandemic of coronavirus disease-19 (COVID-19) progresses, many physicians in a wide variety of specialties continue to play pivotal roles in diagnosis and management. In radiology, much of the literature to date has focused on chest CT manifestations of COVID-19 (Zhou et al. [1]; Chung et al. [2]). However, due to infection control issues related to patient transport to CT suites, the inefficiencies introduced in CT room decontamination, and lack of CT availability in parts of the world, portable chest radiography (CXR) will likely be the most commonly utilized modality for identification and follow up of lung abnormalities. In fact, the American College of Radiology (ACR) notes that CT decontamination required after scanning COVID-19 patients may disrupt radiological service availability and suggests that portable chest radiography may be considered to minimize the risk of cross-infection (American College of Radiology [3]). Furthermore, in cases of high clinical suspicion for COVID-19, a positive CXR may obviate the need for CT. Additionally, CXR utilization for early disease detection may also play a vital role in areas around the world with limited access to reliable real-time reverse transcription polymerase chain reaction (RT-PCR) COVID testing. The purpose of this pictorial review article is to describe the most common manifestations and patterns of lung abnormality on CXR in COVID-19 in order to equip the medical community in its efforts to combat this pandemic.


Subject(s)
Clinical Laboratory Techniques , Coronavirus Infections , Pandemics , Pneumonia, Viral , Radiography, Thoracic , Betacoronavirus , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Coronavirus , Coronavirus Infections/diagnosis , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/epidemiology , Humans , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/epidemiology , Radiography, Thoracic/instrumentation , SARS-CoV-2 , Tomography, X-Ray Computed , X-Rays
2.
J Med Imaging Radiat Sci ; 52(2): 186-190, 2021 06.
Article in English | MEDLINE | ID: covidwho-1171127

ABSTRACT

INTRODUCTION: Portable chest radiography through glass (TG-CXR) is a novel technique, particularly useful during the COVID-19 (Coronavirus disease 2019) pandemic. The purpose of this study was to understand the cost and benefit of adopting TG-CXR in quantifiable terms. METHODS: Portable or bedside radiographs are typically performed by a team of two technologists. The TG-CXR method has the benefit of allowing one technologist to stay outside of the patient room while operating the portable radiography machine, reducing PPE use, decreasing the frequency of radiography machine sanitization and decreasing technologists' exposures to potentially infectious patients. The cost of implementing this technique during the current COVID-19 pandemic was obtained from our department's operational database. The direct cost of routinely used PPE and sanitization materials and the cost of the time taken by the technologists to clean the machine was used to form a quantitative picture of the benefit associated with TG-CXR technique. RESULTS: Technologists were trained on the TG-CXR method during a 15 min shift change briefing. This translated to a one-time cost of $424.88 USD. There was an average reduction of portable radiography machine downtime of 4 min and 48 s per study. The benefit of adopting the TG-CXR technique was $9.87 USD per patient imaged. This will result in a projected net cost savings of $51,451.84 USD per annum. CONCLUSION: Adoption of the TG-CXR technique during the COVID-19 pandemic involved minimal one-time cost, but is projected to result in a net-benefit of over $51,000 USD per annum in our emergency department.


Subject(s)
COVID-19 , Cost-Benefit Analysis , Radiography, Thoracic/economics , Glass , Humans , Point-of-Care Testing/economics , Radiography, Thoracic/instrumentation , Tertiary Care Centers
3.
Korean J Radiol ; 22(4): 634-651, 2021 04.
Article in English | MEDLINE | ID: covidwho-963571

ABSTRACT

Dynamic X-ray (DXR) is a functional imaging technique that uses sequential images obtained by a flat-panel detector (FPD). This article aims to describe the mechanism of DXR and the analysis methods used as well as review the clinical evidence for its use. DXR analyzes dynamic changes on the basis of X-ray translucency and can be used for analysis of diaphragmatic kinetics, ventilation, and lung perfusion. It offers many advantages such as a high temporal resolution and flexibility in body positioning. Many clinical studies have reported the feasibility of DXR and its characteristic findings in pulmonary diseases. DXR may serve as an alternative to pulmonary function tests in patients requiring contact inhibition, including patients with suspected or confirmed coronavirus disease 2019 or other infectious diseases. Thus, DXR has a great potential to play an important role in the clinical setting. Further investigations are needed to utilize DXR more effectively and to establish it as a valuable diagnostic tool.


Subject(s)
COVID-19/epidemiology , Lung/growth & development , Radiography, Thoracic/instrumentation , Equipment Design , Humans , Lung Diseases/diagnostic imaging
4.
Biomed Eng Online ; 19(1): 88, 2020 Nov 25.
Article in English | MEDLINE | ID: covidwho-945214

ABSTRACT

BACKGROUND: The large volume and suboptimal image quality of portable chest X-rays (CXRs) as a result of the COVID-19 pandemic could post significant challenges for radiologists and frontline physicians. Deep-learning artificial intelligent (AI) methods have the potential to help improve diagnostic efficiency and accuracy for reading portable CXRs. PURPOSE: The study aimed at developing an AI imaging analysis tool to classify COVID-19 lung infection based on portable CXRs. MATERIALS AND METHODS: Public datasets of COVID-19 (N = 130), bacterial pneumonia (N = 145), non-COVID-19 viral pneumonia (N = 145), and normal (N = 138) CXRs were analyzed. Texture and morphological features were extracted. Five supervised machine-learning AI algorithms were used to classify COVID-19 from other conditions. Two-class and multi-class classification were performed. Statistical analysis was done using unpaired two-tailed t tests with unequal variance between groups. Performance of classification models used the receiver-operating characteristic (ROC) curve analysis. RESULTS: For the two-class classification, the accuracy, sensitivity and specificity were, respectively, 100%, 100%, and 100% for COVID-19 vs normal; 96.34%, 95.35% and 97.44% for COVID-19 vs bacterial pneumonia; and 97.56%, 97.44% and 97.67% for COVID-19 vs non-COVID-19 viral pneumonia. For the multi-class classification, the combined accuracy and AUC were 79.52% and 0.87, respectively. CONCLUSION: AI classification of texture and morphological features of portable CXRs accurately distinguishes COVID-19 lung infection in patients in multi-class datasets. Deep-learning methods have the potential to improve diagnostic efficiency and accuracy for portable CXRs.


Subject(s)
COVID-19/complications , Image Processing, Computer-Assisted/methods , Lung Diseases/diagnostic imaging , Lung Diseases/virology , Machine Learning , Radiography, Thoracic/instrumentation , Tomography, X-Ray Computed/instrumentation , Humans , Lung Diseases/complications
5.
J Med Imaging Radiat Oncol ; 65(2): 133-138, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-917732

ABSTRACT

INTRODUCTION: Chest radiographic (CXR) features, particularly portable CXR findings, of COVID-19 have not yet been systematically described, either as a baseline tool or as a follow-up method, despite the continuing global pandemic. There is a marked paucity of articles detailing the CXR findings vis-à-vis a multitude of articles dedicated to the CT features of COVID-19. The purpose of this article is to describe the morphological and distributional patterns of the lung opacities in CXR and to classify the spectrum of essential features on portable AP chest radiographs of PCR-positive COVID-19 patients admitted in a tertiary care hospital in Scandinavia. To our knowledge, this is the first article to describe the morphological and topographical features of CXRs in COVID-19-positive cases. METHODS: A retrospective analysis of twenty (20) RT-PCR-positive COVID-19 patients admitted to the hospital between 12.03.2020 to 10.04.2020 was done in this study. Morphology and distribution of the opacities were reviewed by two senior consultants and analysed for patterns. RESULTS: Most patients had ground-glass opacities (80-85%) and interspersed interstitial opacities (70-75%), often with a characteristic appearance. The opacities were mostly bilateral (80%) and distributed in the lower zones (and to some extent mid zones) and in the middle and peripheral regions, with a tendency to merge towards the hilar areas. There were high interobserver agreements among various parameters and no significant statistical difference between observer 1 and 2. CONCLUSION: Chest radiographics show characteristic patterns and distributions, which can be used as an adjunct in the diagnosis and follow-up of COVID-19 patients in specific clinical contexts.


Subject(s)
COVID-19/diagnostic imaging , Lung/diagnostic imaging , Radiography, Thoracic/methods , Tertiary Care Centers , Adult , Aged , Female , Humans , Male , Middle Aged , Radiography, Thoracic/instrumentation , Retrospective Studies , SARS-CoV-2 , Scandinavian and Nordic Countries , Young Adult
6.
Radiology ; 296(1): 172-180, 2020 07.
Article in English | MEDLINE | ID: covidwho-38290

ABSTRACT

With more than 900 000 confirmed cases worldwide and nearly 50 000 deaths during the first 3 months of 2020, the coronavirus disease 2019 (COVID-19) pandemic has emerged as an unprecedented health care crisis. The spread of COVID-19 has been heterogeneous, resulting in some regions having sporadic transmission and relatively few hospitalized patients with COVID-19 and others having community transmission that has led to overwhelming numbers of severe cases. For these regions, health care delivery has been disrupted and compromised by critical resource constraints in diagnostic testing, hospital beds, ventilators, and health care workers who have fallen ill to the virus exacerbated by shortages of personal protective equipment. Although mild cases mimic common upper respiratory viral infections, respiratory dysfunction becomes the principal source of morbidity and mortality as the disease advances. Thoracic imaging with chest radiography and CT are key tools for pulmonary disease diagnosis and management, but their role in the management of COVID-19 has not been considered within the multivariable context of the severity of respiratory disease, pretest probability, risk factors for disease progression, and critical resource constraints. To address this deficit, a multidisciplinary panel comprised principally of radiologists and pulmonologists from 10 countries with experience managing patients with COVID-19 across a spectrum of health care environments evaluated the utility of imaging within three scenarios representing varying risk factors, community conditions, and resource constraints. Fourteen key questions, corresponding to 11 decision points within the three scenarios and three additional clinical situations, were rated by the panel based on the anticipated value of the information that thoracic imaging would be expected to provide. The results were aggregated, resulting in five main and three additional recommendations intended to guide medical practitioners in the use of chest radiography and CT in the management of COVID-19.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/diagnostic imaging , Pandemics , Pneumonia, Viral/diagnostic imaging , Radiography, Thoracic/methods , COVID-19 , Consensus , Coronavirus Infections/physiopathology , Coronavirus Infections/virology , Disease Progression , Global Health , Guideline Adherence , Humans , Personal Protective Equipment , Pneumonia, Viral/physiopathology , Pneumonia, Viral/virology , Radiography, Thoracic/instrumentation , SARS-CoV-2 , Severity of Illness Index , Societies, Medical , Triage , Video Recording
7.
Phys Eng Sci Med ; 43(3): 765-779, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-641271

ABSTRACT

The COVID-19 pandemic in 2020 has led to preparations within our hospital for an expected surge of patients. This included developing a technique to perform mobile chest X-ray imaging through glass, allowing the X-ray unit to remain outside of the patient's room, effectively reducing the cleaning time associated with disinfecting equipment. The technique also reduced the infection risk of radiographers. We assessed the attenuation of different types of glass in the hospital and the technique parameters required to account for the glass filtration and additional source to image distance (SID). Radiation measurements were undertaken in a simulated set-up to determine the appropriate position for staff inside and outside the room to ensure occupational doses were kept as low as reasonably achievable. Image quality was scored and technical parameter information collated. The alternative to imaging through glass is the standard portable chest X-ray within the room. The radiation safety requirements for this standard technique were also assessed. Image quality was found to be acceptable or borderline in 90% of the images taken through glass and the average patient dose was 0.02 millisieverts (mSv) per image. The majority (67%) of images were acquired at 110 kV, with an average 5.5 mAs and with SID ranging from 180 to 300 cm. With staff positioned at greater than 1 m from the patient and at more than 1 m laterally from the tube head outside the room to minimise scatter exposure, air kerma values did not exceed 0.5 microgray (µGy) per image. This method has been implemented successfully.


Subject(s)
Coronavirus Infections , Infection Control , Pandemics , Pneumonia, Viral , Radiography, Thoracic , Betacoronavirus , COVID-19 , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/prevention & control , Glass , Humans , Infection Control/instrumentation , Infection Control/methods , Infection Control/standards , Occupational Health/standards , Pandemics/prevention & control , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/prevention & control , Radiography, Thoracic/instrumentation , Radiography, Thoracic/methods , Radiography, Thoracic/standards , Radiology Department, Hospital/organization & administration , Radiology Department, Hospital/standards , SARS-CoV-2
8.
Emerg Radiol ; 27(6): 597-600, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-591918

ABSTRACT

To present a novel use of a portable computed tomography (CT) for evaluation of COVID-19 patients presenting to an urgent care center (UCC). Infection control is imperative for hospitals treating patients with COVID-19, even more so in cancer centers, where the majority of the patient population is susceptible to adverse outcomes from the infection. Over the past several weeks, our department has worked to repurpose a portable CT scanner from our surgical colleagues that operates with fixed-parameters to perform non-contrast, helical, thin-slice chest imaging to address the known pulmonary complications of COVID-19. Despite the technical limitations of the portable CT unit that was repurposed for the UCC, diagnostic-quality images in an acute care setting were successfully obtained. Repurposing of a portable CT scanner for use in COVID-19 patients offers a feasible option to obtain diagnostic quality images while minimizing the risk of exposing other patients and hospital staff to an infected patient.


Subject(s)
Ambulatory Care , Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Point-of-Care Systems , Radiography, Thoracic/instrumentation , Tomography, X-Ray Computed/instrumentation , Betacoronavirus , COVID-19 , Cancer Care Facilities , Equipment Design , Female , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL